

KUVEMPU UNIVERSITY

OFFICE OF THE DIRECTOR DIRECTORATE OF DISTANCE EDUCATION

nana Sanyadri, Shankaraghatta - 577 451, Karnataka

Phone: 08282-256426; Fax: 08282-256370; Website: www.kuvempuuniversitydde.org E-mails: ssgc@kuvempuuniversity.org; info@kuvempuuniversitydde.org

TOPICS FOR INTERNAL ASSESSMENT ASSIGNMENTS: 2019-20

Course: M.Sc. PHYSICS (Previous)

Important Notes: (1) Students are advised to read the separate enclosed instructions before beginning the writing of assignments. (2) Out of 20 Internal Assignment marks per paper, 5 marks will be awarded for regularity (attendance) to Counseling/ Contact Programme classes pertaining to the paper. Therefore, the topics given below are only for 15 marks each paper.

Paper I: Mathematical methods and classical mechanics

- 1) A sphere of radius 'a' is centered at a point Γ_1 ,
 - a) Write out the algebraic equation for the sphere

4 Marks

- b) Write out a vector equation for the sphere
- 2) Find the residue of f(z)

Where
$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z+4)}$$

3Marks

3) Discuss the harmonic oscillator problem using Hamilton Jacobi method

3Marks

Paper II: Quantum and Statistical Mechanics

- 1) With U and F thermo dynamical potentials, obtain the Gibb's Helmoltz equation? 2Marks
- 2) Explain the scattering by an alternative square potential well.

4marks

3) A particle is in an infinitely deep one dimensional well, determine the momentum distribution for the particle in the exited state n=2.?

4marks

Paper III: Solid state physics

1) Draw a plane lattice and indicate two kinds of double cells and one triple cell in that lattice.

[[

3marks

2) Prepare an energy diagram representing an n-type and p-type semiconductor.

3marks

3) Find the energies of six lowest energy levels of a particle in cubical box. Which of the levels are degenerate?4marks

Paper IV: Electronics

1) The electric field \vec{E} and the magnetic field \vec{H} in a source-free homogeneous, isotropic region are given as

$$\overrightarrow{E} = 100(j\cancel{X} + 2\cancel{y} - j\cancel{z})e^{jwt}$$

$$\vec{H} = (-\hat{x} + j\hat{y} - j\hat{z})e^{jwt}$$

Obtain the average power density?

3marks

2) Find $v_0(t)$ for t>0 in the circuit of figure given below, if switch is changed at t=0 after having remained in the position shown for long time.

4marks

3) Describe how an FET can be used as voltage variable resistor (VVR)

3marks
